Y axis issues. y 400 is actually y 200 on laser

I have a chinese laser with 400 x 400 bed.

I followed this tutorial

and changed the configuration on smoothie with alpha and beta set to 400. made the other changes he did to slow it down as well.

my problem is when its at 0.0 it shows fine. when i move it to 200.200 the x axis moves and y axis stays the same and shakes. when i move it to 200.400 it will move to 200.200. Ive tried different setups and every issue is off on the y axis completely. Its set to front left.

i had no issues with m2nano julong board and k40 whisperer. Im new to these things and just cant get the basic setup to work with the laserboard and lightburn. I dont see anything in these settings here https://cohesion3d.com/knowledgebase/larger-laser-machine-installation-guide/ that would change why its always off by 200mm.

Hi Rory,

Welcome to the forum!

Start here: Setting Up the Correct Bedsize

You might also need to adjust beta current in the config file, based on your stepper motor specs. More information: Changing Stepper Motor Currents

Please provide a copy of your configuration file for review. Copy and paste the content of the file in a reply with 3 backticks (on the tilde key in the upper left corner of the keyboard) ``` above and below the content. Example:

Paste content here

Alternatively, you can paste the contents to Dropbox, Google Drive, or Pastebin and provide the link here.

Thanks Ive looked at the links and Ive gone over and over with some of the stuff but nothing else seems to explain why the y axis is 200mm off.

#Cohesion3D LaserBoard v0.2

# NOTE Lines must not exceed 132 characters
## Robot module configurations : general handling of movement G-codes and slicing into moves
default_feed_rate                            4000             # Default rate ( mm/minute ) for G1/G2/G3 moves
default_seek_rate                            24000            # Default rate ( mm/minute ) for G0 moves
mm_per_arc_segment                           0.0              # Fixed length for line segments that divide arcs 0 to disable
mm_max_arc_error                             0.01             # The maximum error for line segments that divide arcs 0 to disable
                                                              # note it is invalid for both the above be 0
                                                              # if both are used, will use largest segment length based on radius
#mm_per_line_segment                         5                # Lines can be cut into segments ( not usefull with cartesian
                                                              # coordinates robots ).

# Arm solution configuration : Cartesian robot. Translates mm positions into stepper positions
alpha_steps_per_mm                           157.575          # Steps per mm for alpha stepper
beta_steps_per_mm                            157.575          # Steps per mm for beta stepper
gamma_steps_per_mm                           157.575          # Steps per mm for gamma stepper

# Planner module configuration : Look-ahead and acceleration configuration
planner_queue_size                           32               # DO NOT CHANGE THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING
acceleration                                 2500             # Acceleration in mm/second/second.
#z_acceleration                              500              # Acceleration for Z only moves in mm/s^2, 0 uses acceleration which is the default. DO NOT SET ON A DELTA
junction_deviation                           0.05             # Similar to the old "max_jerk", in millimeters,
                                                              # see https://github.com/grbl/grbl/blob/master/planner.c
                                                              # and https://github.com/grbl/grbl/wiki/Configuring-Grbl-v0.8
                                                              # Lower values mean being more careful, higher values means being
                                                              # faster and have more jerk
#z_junction_deviation                        0.0              # for Z only moves, -1 uses junction_deviation, zero disables junction_deviation on z moves DO NOT SET ON A DELTA
#minimum_planner_speed                       0.0              # sets the minimum planner speed in mm/sec

# Stepper module configuration
microseconds_per_step_pulse                  2                # Duration of step pulses to stepper drivers, in microseconds
base_stepping_frequency                      100000           # Base frequency for stepping

# Cartesian axis speed limits
x_axis_max_speed                             20000            # mm/min
y_axis_max_speed                             20000            # mm/min
z_axis_max_speed                             20000            # mm/min

# Stepper module pins ( ports, and pin numbers, appending "!" to the number will invert a pin )
alpha_step_pin                               2.0              # Pin for alpha stepper step signal
alpha_dir_pin                                0.5              # Pin for alpha stepper direction
alpha_en_pin                                 0.4              # Pin for alpha enable pin
alpha_current                                1.2              # X stepper motor current
alpha_max_rate                               24000.0          # mm/min
alpha_acceleration                           2500             # mm/sec²

beta_step_pin                                2.1              # Pin for beta stepper step signal
beta_dir_pin                                 0.11            # Pin for beta stepper direction
beta_en_pin                                  0.10             # Pin for beta enable
beta_current                                 1.2                # Y stepper motor current
beta_max_rate                                24000.0          # mm/min
beta_acceleration                            2500             # mm/sec²

gamma_step_pin                               2.2              # Pin for gamma stepper step signal
gamma_dir_pin                                0.20!            # Pin for gamma stepper direction
gamma_en_pin                                 0.19             # Pin for gamma enable
gamma_current                                0.6                # Z stepper motor current
gamma_max_rate                               24000.0          # mm/min
gamma_acceleration                           2500             # mm/sec²

# A axis
delta_steps_per_mm                           157.5           # may be steps per degree for example
delta_step_pin                               2.3              # Pin for delta stepper step signal
delta_dir_pin                                0.22             # Pin for delta stepper direction
delta_en_pin                                 0.21             # Pin for delta enable
delta_current                                0.6                # Z stepper motor current
delta_max_rate                               12000            # mm/min
delta_acceleration                           1000             # mm/sec²

# B axis
epsilon_steps_per_mm                         100              # may be steps per degree for example
epsilon_step_pin                             xx               # Pin for delta stepper step signal
epsilon_dir_pin                              xx               # Pin for delta stepper direction
epsilon_en_pin                               xx               # Pin for delta enable
epsilon_current                              1.5              # Z stepper motor current
epsilon_max_rate                             300.0            # mm/min
epsilon_acceleration                         500.0            # mm/sec²

# C axis
zeta_steps_per_mm                            100              # may be steps per degree for example
zeta_step_pin                                xx               # Pin for delta stepper step signal
zeta_dir_pin                                 xx               # Pin for delta stepper direction
zeta_en_pin                                  xx               # Pin for delta enable
zeta_current                                 1.5              # Z stepper motor current
zeta_max_rate                                300.0            # mm/min
zeta_acceleration                            500.0            # mm/sec²

## System configuration
# Serial communications configuration ( baud rate defaults to 9600 if undefined )
uart0.baud_rate                              115200           # Baud rate for the default hardware serial port
second_usb_serial_enable                     false            # This enables a second usb serial port (to have both pronterface
                                                              # and a terminal connected)
#leds_disable                                true             # disable using leds after config loaded
#play_led_disable                            true             # disable the play led

# Kill button (used to be called pause) maybe assigned to a different pin, set to the onboard pin by default
kill_button_enable                           true             # set to true to enable a kill button
kill_button_pin                              2.12             # kill button pin. default is same as pause button 2.12 (2.11 is another good choice)

#msd_disable                                 false            # disable the MSD (USB SDCARD) when set to true (needs special binary)
#dfu_enable                                  false            # for linux developers, set to true to enable DFU
#watchdog_timeout                            10               # watchdog timeout in seconds, default is 10, set to 0 to disable the watchdog

# Only needed on a smoothieboard
currentcontrol_module_enable                 true             #

## Extruder module configuration
extruder.hotend.enable                          false          # Whether to activate the extruder module at all. All configuration is ignored if false
extruder.hotend.steps_per_mm                    157.575        # Steps per mm for extruder stepper
extruder.hotend.default_feed_rate               60000          # Default rate ( mm/minute ) for moves where only the extruder moves
extruder.hotend.acceleration                    3000           # Acceleration for the stepper motor mm/sec?
extruder.hotend.max_speed                       1000           # mm/s

extruder.hotend.step_pin                        2.3              # Pin for extruder step signal
extruder.hotend.dir_pin                         0.22             # Pin for extruder dir signal
extruder.hotend.en_pin                          0.21             # Pin for extruder enable signal

# extruder offset
#extruder.hotend.x_offset                        0                # x offset from origin in mm
#extruder.hotend.y_offset                        0                # y offset from origin in mm
#extruder.hotend.z_offset                        0                # z offset from origin in mm

# firmware retract settings when using G10/G11, these are the defaults if not defined, must be defined for each extruder if not using the defaults
#extruder.hotend.retract_length                  3               # retract length in mm
#extruder.hotend.retract_feedrate                45              # retract feedrate in mm/sec
#extruder.hotend.retract_recover_length          0               # additional length for recover
#extruder.hotend.retract_recover_feedrate        8               # recover feedrate in mm/sec (should be less than retract feedrate)
#extruder.hotend.retract_zlift_length            0               # zlift on retract in mm, 0 disables
#extruder.hotend.retract_zlift_feedrate          6000            # zlift feedrate in mm/min (Note mm/min NOT mm/sec)
#delta_current                                    1.8              # First extruder stepper motor current

# Second extruder module configuration
#extruder.hotend2.enable                          true             # Whether to activate the extruder module at all. All configuration is ignored if false
#extruder.hotend2.steps_per_mm                    140              # Steps per mm for extruder stepper
#extruder.hotend2.default_feed_rate               600              # Default rate ( mm/minute ) for moves where only the extruder moves
#extruder.hotend2.acceleration                    500              # Acceleration for the stepper motor, as of 0.6, arbitrary ratio
#extruder.hotend2.max_speed                       50               # mm/s

#extruder.hotend2.step_pin                        2.8              # Pin for extruder step signal
#extruder.hotend2.dir_pin                         2.13             # Pin for extruder dir signal
#extruder.hotend2.en_pin                          4.29             # Pin for extruder enable signal

#extruder.hotend2.x_offset                        0                # x offset from origin in mm
#extruder.hotend2.y_offset                        25.0             # y offset from origin in mm
#extruder.hotend2.z_offset                        0                # z offset from origin in mm
#epsilon_current                                  1.5              # Second extruder stepper motor current


## Laser module configuration
laser_module_enable                           true            # Whether to activate the laser module at all. All configuration is
                                                              # ignored if false.
laser_module_pin                              2.5             # this pin will be PWMed to control the laser. Only P2.0 - P2.5, P1.18, P1.20, P1.21, P1.23, P1.24, P1.26, P3.25, P3.26
                                                              # can be used since laser requires hardware PWM
laser_module_maximum_power                    1.0             # this is the maximum duty cycle that will be applied to the laser
laser_module_minimum_power                    0.0             # This is a value just below the minimum duty cycle that keeps the laser
                                                              # active without actually burning.
#laser_module_default_power                   0.8             # This is the default laser power that will be used for cuts if a power has not been specified.  The value is a scale between
                                                              # the maximum and minimum power levels specified above
laser_module_pwm_period                       200             # this sets the pwm frequency as the period in microseconds

switch.laserfire.enable                       false
switch.laserfire.output_pin                   2.6
switch.laserfire.output_type                  digital
switch.laserfire.input_on_command             M3
switch.laserfire.input_off_command            M5

## Temperature control configuration
# First hotend configuration
temperature_control.hotend.enable            false            # Whether to activate this ( "hotend" ) module at all.
                                                              # All configuration is ignored if false.
temperature_control.hotend.thermistor_pin    0.23             # Pin for the thermistor to read
temperature_control.hotend.heater_pin        2.7              # Pin that controls the heater, set to nc if a readonly thermistor is being defined
temperature_control.hotend.thermistor        EPCOS100K        # see http://smoothieware.org/temperaturecontrol#toc5
#temperature_control.hotend.beta             4066             # or set the beta value
temperature_control.hotend.set_m_code        104              #
temperature_control.hotend.set_and_wait_m_code 109            #
temperature_control.hotend.designator        T                #
#temperature_control.hotend.max_temp         300              # Set maximum temperature - Will prevent heating above 300 by default
#temperature_control.hotend.min_temp         0                # Set minimum temperature - Will prevent heating below if set

# safety control is enabled by default and can be overidden here, the values show the defaults
#temperature_control.hotend.runaway_heating_timeout      900   # max is 2040 seconds, how long it can take to heat up
#temperature_control.hotend.runaway_cooling_timeout      900   # max is 2040 seconds, how long it can take to cool down if temp is set lower
#temperature_control.hotend.runaway_range                20    # Max setting is 63?C

#temperature_control.hotend.p_factor         13.7             # permanently set the PID values after an auto pid
#temperature_control.hotend.i_factor         0.097            #
#temperature_control.hotend.d_factor         24               #

#temperature_control.hotend.max_pwm          64               # max pwm, 64 is a good value if driving a 12v resistor with 24v.

# Second hotend configuration
#temperature_control.hotend2.enable            true             # Whether to activate this ( "hotend" ) module at all.
                                                              # All configuration is ignored if false.

#temperature_control.hotend2.thermistor_pin    0.25             # Pin for the thermistor to read
#temperature_control.hotend2.heater_pin        1.23             # Pin that controls the heater
#temperature_control.hotend2.thermistor        EPCOS100K        # see http://smoothieware.org/temperaturecontrol#toc5
##temperature_control.hotend2.beta             4066             # or set the beta value
#temperature_control.hotend2.set_m_code        104              #
#temperature_control.hotend2.set_and_wait_m_code 109            #
#temperature_control.hotend2.designator        T1               #

#temperature_control.hotend2.p_factor          13.7           # permanently set the PID values after an auto pid
#temperature_control.hotend2.i_factor          0.097          #
#temperature_control.hotend2.d_factor          24             #

#temperature_control.hotend2.max_pwm          64               # max pwm, 64 is a good value if driving a 12v resistor with 24v.

temperature_control.bed.enable               false             #
temperature_control.bed.thermistor_pin       0.24             #
temperature_control.bed.heater_pin           2.5              #
temperature_control.bed.thermistor           Honeywell100K    # see http://smoothieware.org/temperaturecontrol#toc5
#temperature_control.bed.beta                3974             # or set the beta value

temperature_control.bed.set_m_code           140              #
temperature_control.bed.set_and_wait_m_code  190              #
temperature_control.bed.designator           B                #

#temperature_control.bed.bang_bang            false           # set to true to use bang bang control rather than PID
#temperature_control.bed.hysteresis           2.0             # set to the temperature in degrees C to use as hysteresis
                                                              # when using bang bang

## Switch module for fan control
switch.fan.enable                            true
switch.fan.input_on_command                  M106             #
switch.fan.input_off_command                 M107             #
switch.fan.output_pin                        2.4              #
switch.fan.output_type                       pwm              # pwm output settable with S parameter in the input_on_comand
#switch.fan.max_pwm                          255              # set max pwm for the pin default is 255

switch.misc.enable                           false             #
switch.misc.input_on_command                 M42              #
switch.misc.input_off_command                M43              #
switch.misc.output_pin                       2.4              #
switch.misc.output_type                      digital          # just an on or off pin

# Switch module for spindle control
#switch.spindle.enable                        false            #

## Temperatureswitch :
# automatically toggle a switch at a specified temperature. Different ones of these may be defined to monitor different temperatures and switch different swithxes
# useful to turn on a fan or water pump to cool the hotend
#temperatureswitch.hotend.enable              true             #
#temperatureswitch.hotend.designator          T                # first character of the temperature control designator to use as the temperature sensor to monitor
#temperatureswitch.hotend.switch              misc             # select which switch to use, matches the name of the defined switch
#temperatureswitch.hotend.threshold_temp      60.0             # temperature to turn on (if rising) or off the switch
#temperatureswitch.hotend.heatup_poll         15               # poll heatup at 15 sec intervals
#temperatureswitch.hotend.cooldown_poll       60               # poll cooldown at 60 sec intervals


## Endstops
endstops_enable                              true             # the endstop module is enabled by default and can be disabled here
#corexy_homing                               false            # set to true if homing on a hbot or corexy
alpha_min_endstop                            1.24^            # add a ! to invert if endstop is NO connected to ground
alpha_max_endstop                            1.25^            # NOTE set to nc if this is not installed
alpha_homing_direction                       home_to_min      # or set to home_to_max and set alpha_max
alpha_min                                    0                # this gets loaded after homing when home_to_min is set
alpha_max                                    400              # this gets loaded after homing when home_to_max is set
beta_min_endstop                             1.26^            #
beta_max_endstop                             1.27^            #
beta_homing_direction                        home_to_max      #
beta_min                                     0                #
beta_max                                     400              #
gamma_min_endstop                            1.28^            #
gamma_max_endstop                            1.29^            #
gamma_homing_direction                       home_to_min      #
gamma_min                                    0                #
gamma_max                                    200              #

alpha_max_travel                             500              # max travel in mm for alpha/X axis when homing
beta_max_travel                              500              # max travel in mm for beta/Y axis when homing
gamma_max_travel                             500              # max travel in mm for gamma/Z axis when homing

# optional order in which axis will home, default is they all home at the same time,
# if this is set it will force each axis to home one at a time in the specified order
#homing_order                                 XYZ              # x axis followed by y then z last
#move_to_origin_after_home                    false            # move XY to 0,0 after homing

# optional enable limit switches, actions will stop if any enabled limit switch is triggered
#alpha_limit_enable                          false            # set to true to enable X min and max limit switches
#beta_limit_enable                           false            # set to true to enable Y min and max limit switches
#gamma_limit_enable                          false            # set to true to enable Z min and max limit switches

alpha_fast_homing_rate_mm_s                  50               # feedrates in mm/second
beta_fast_homing_rate_mm_s                   50               # "
gamma_fast_homing_rate_mm_s                  4                # "
alpha_slow_homing_rate_mm_s                  25               # "
beta_slow_homing_rate_mm_s                   25               # "
gamma_slow_homing_rate_mm_s                  2                # "

alpha_homing_retract_mm                      5                # distance in mm
beta_homing_retract_mm                       5                # "
gamma_homing_retract_mm                      1                # "

#endstop_debounce_count                      100              # uncomment if you get noise on your endstops, default is 100

## Z-probe
zprobe.enable                                false           # set to true to enable a zprobe
zprobe.probe_pin                             1.28!^          # pin probe is attached to if NC remove the !
zprobe.slow_feedrate                         5               # mm/sec probe feed rate
#zprobe.debounce_count                       100             # set if noisy
zprobe.fast_feedrate                         100             # move feedrate mm/sec
zprobe.probe_height                          5               # how much above bed to start probe
#gamma_min_endstop                           nc              # normally 1.28. Change to nc to prevent conflict,

# associated with zprobe the leveling strategy to use
#leveling-strategy.three-point-leveling.enable         true        # a leveling strategy that probes three points to define a plane and keeps the Z parallel to that plane
#leveling-strategy.three-point-leveling.point1         100.0,0.0   # the first probe point (x,y) optional may be defined with M557
#leveling-strategy.three-point-leveling.point2         200.0,200.0 # the second probe point (x,y)
#leveling-strategy.three-point-leveling.point3         0.0,200.0   # the third probe point (x,y)
#leveling-strategy.three-point-leveling.home_first     true        # home the XY axis before probing
#leveling-strategy.three-point-leveling.tolerance      0.03        # the probe tolerance in mm, anything less that this will be ignored, default is 0.03mm
#leveling-strategy.three-point-leveling.probe_offsets  0,0,0       # the probe offsets from nozzle, must be x,y,z, default is no offset
#leveling-strategy.three-point-leveling.save_plane     false       # set to true to allow the bed plane to be saved with M500 default is false

## Panel
panel.enable                                 true             # set to true to enable the panel code

# Example for reprap discount GLCD
# on glcd EXP1 is to left and EXP2 is to right, pin 1 is bottom left, pin 2 is top left etc.
# +5v is EXP1 pin 10, Gnd is EXP1 pin 9
panel.lcd                                   reprap_discount_glcd     #
panel.spi_channel                           0                 # spi channel to use  ; GLCD EXP1 Pins 3,5 (MOSI, SCLK)
panel.spi_cs_pin                            0.16              # spi chip select     ; GLCD EXP1 Pin 4
panel.encoder_a_pin                         3.25!^            # encoder pin         ; GLCD EXP2 Pin 3
panel.encoder_b_pin                         3.26!^            # encoder pin         ; GLCD EXP2 Pin 5
panel.click_button_pin                      1.30!^            # click button        ; GLCD EXP1 Pin 2
panel.buzz_pin                              1.31              # pin for buzzer      ; GLCD EXP1 Pin 1
panel.back_button_pin                       2.11!^            # back button         ; GLCD EXP2 Pin 8

panel.encoder_resolution		    4

# pins used with other panels
#panel.up_button_pin                         0.1!              # up button if used
#panel.down_button_pin                       0.0!              # down button if used
#panel.click_button_pin                      0.18!             # click button if used

panel.menu_offset                            0                 # some panels will need 1 here

panel.alpha_jog_feedrate                     6000              # x jogging feedrate in mm/min
panel.beta_jog_feedrate                      6000              # y jogging feedrate in mm/min
panel.gamma_jog_feedrate                     200               # z jogging feedrate in mm/min

panel.hotend_temperature                     185               # temp to set hotend when preheat is selected
panel.bed_temperature                        60                # temp to set bed when preheat is selected

## Custom menus : Example of a custom menu entry, which will show up in the Custom entry.
# NOTE _ gets converted to space in the menu and commands, | is used to separate multiple commands
#custom_menu.power_on.enable                true              #
#custom_menu.power_on.name                  Power_on          #
#custom_menu.power_on.command               M80               #

#custom_menu.power_off.enable               true              #
#custom_menu.power_off.name                 Power_off         #
#custom_menu.power_off.command              M81               #


## Network settings
network.enable                               false            # enable the ethernet network services
network.webserver.enable                     true             # enable the webserver
network.telnet.enable                        true             # enable the telnet server
network.ip_address                           auto             # use dhcp to get ip address
# uncomment the 3 below to manually setup ip address
#network.ip_address                           192.168.3.222    # the IP address
#network.ip_mask                              255.255.255.0    # the ip mask
#network.ip_gateway                           192.168.3.1      # the gateway address
#network.mac_override                         xx.xx.xx.xx.xx.xx  # override the mac address, only do this if you have a conflict

digipotchip	mcp4451 
digipot_factor	95.521	# DO NOT CHANGE FOR LASERBOARD 
digipot_max_current	1.2	# Maximum current (Amps) the digipot will allow for all axis 

switch.spread1.enable                        true
switch.spread1.output_pin                    2.6
switch.spread1.startup_state                 true

switch.spread2.enable                        true
switch.spread2.output_pin                    2.7
switch.spread2.startup_state                 true

switch.spread3.enable                        true
switch.spread3.output_pin                    2.8
switch.spread3.startup_state                 true

switch.spread4.enable                        true
switch.spread4.output_pin                    2.13
switch.spread4.startup_state                 true

#switch.spread1.input_on_command              M106     # any command that starts with this exact string turns this switch on
#switch.spread1.input_off_command             M107     # any command starting with this exact string turns off the switch

Thanks, Rory. I do not see anything that could cause issue in the config file.

To confirm, your machine has endstops that trigger in the upper left?

Can you provide pictures of your LaserBoard connections, the work area of your machine, and a close up of your endstops?

Please do the tests here for checking the endstops and let me know what the results for each are.

Disable auto homing:

  • In LightBurn’s Laser panel click the Devices button to get to the device configuration screen.
  • Select your laser (most likely named Smoothieware) and click the Edit button.
  • Click Next until you get to the screen where you can turn off Auto home on startup.
  • Click Next and Finish to save the changes.

Move the head to the middle of the work area.
Run the M119 command in the console.
Provide the results from the console window when no switches are being interrupted.
Expected: X and Y both read 0

Move the head to the far left (or far right) depending on which side the endstop is on.
Run the M119 command in the console.
Provide the console results window when the X endstop is interrupted and let me know which side of the work area it gets triggered on.
Expected: X reads 1 and Y reads 0

Move the head back to the middle of the work area.
Move the head to the top of the work area at the back of the bed.
Run the M119 command in the console.
Provide the console results when the Y endstop is being interrupted.
Expected: X reads 0 and Y reads 1

Move the laser to the home position (or where both endstops make contact).
Run the M119 command in the console.
Provide the console results when both endstops are being interrupted.
Expected: X and Y both read 1

Thank you. Yes it does and the auto home is turned off. Its not letting me upload photos.

I have upgraded your trust level so that you can now upload photos.

Thanks.



Move the head to the middle of the work area.
Run the M119 command in the console.
Provide the results from the console window when no switches are being interrupted.
Expected: X and Y both read 0

Move the head to the far left (or far right) depending on which side the endstop is on.
Run the M119 command in the console.
Provide the console results window when the X endstop is interrupted and let me know which side of the work area it gets triggered on.
Expected: X reads 1 and Y reads 0

Move the head back to the middle of the work area.
Move the head to the top of the work area at the back of the bed.
Run the M119 command in the console.
Provide the console results when the Y endstop is being interrupted.
Expected: X reads 0 and Y reads 1

Move the laser to the home position (or where both endstops make contact).
Run the M119 command in the console.
Provide the console results when both endstops are being interrupted.
Expected: X and Y both read 1

Hi Rory,

Thanks for the photos and test results.

You have proximity sensors and they are always reading as triggered - “1”. Similar to how you made updates from the larger laser machine doc for the config file, you can check if inverting the endstop logic fixes the issue. Steps are at the bottom of this article: Testing the Endstops

If this change results in them always showing as not triggered “0” when testing, you’ll have to rewire the sensors to the board. Trace the wires from the sensor and see if yours are connected to the 24V or 5V terminal on the LPSU. See the Proximity Sensor section of this document for instructions: Installing Endstops / Limit Switches

Let us know if you have any questions.

Thank you. So I am seeing an issue in wiring I should have caught before but didnt notice. Here is the connector setup on my old board with pin locations.

then where it lines up on the laserboard.

Can you tell me the correct color order of the wires on the setup for laserboard?

Hi Rory,

Thanks for the photos. Below are the pin designations for the endstops connector and yours appears to match:

image
image

This is a known concern with proximity sensors. If they are not working, you’ll have to wire them in on the endstops header row below that on the X-MIN and Y-MAX. The setup instructions are covered in the article I shared previously.

If you need me to check your wiring beforehand, please share pics and I’m happy to help.

Thank you. I traced the wires back The sensor colors change here



They go to the stepper setup except for the brown wire that becomes red goes and is split between power supply and the old red wire on the power setup to the m2nano board

the old setup on board for 24 volt

I want to make sure I get it right since I saw this notice there with instructions and dont want to damage the board. I had to order the board from overseas and the time it takes and hassle with customs was a mess.

Note: Do not connect 24V proximity sensors to the far right V+ pins on the Endstops header row. Connecting the wires wrong can cause irrecoverable damage to the board and may also cause disconnects when triggering the switches.

Hi Rory,

Thank you for tracing the wires.


Notice the V+ has nothing connected ^ for the 24V sensor version on the left above. This is what the warning is calling out in the instructions. Do not connect anything to V+ on the Endstops Header row for 24V sensors.

image

Please review and confirm:

  • Your brown wires from the sensors go to a red wire that leads to 24V on the LPSU and to the stock board.
    • Disconnect the red line traced to the LPSU end.
    • The brown wires from the sensors will need to be connected to the Separate Power IN “+” positive in the upper left hand corner of the LaserBoard.
  • Your blue wires from the sensors go to a yellow wire that leads to ground.
    • Each of the blue wires from X and Y will need to be connected to Ground on the Endstops Header row. One will connect to Gnd on X-MIN and one will connect to Gnd on Y-MAX.
  • You appear to have two black wires there, but one is spliced to red and one is spliced to another black. Are both of those coming from your sensors?
    • Each of the black wires from the sensors will need to be connected to Sig on the Endstops Header row. One will connect to Sig on X-MIN and one will connect to Sig on Y-MAX.

Let me know if you have any questions.

Thank you so much.

So the red wire just needs to be disconnected and placed in upper left + side on the photo above only?

So these should be seperated and into matched areas on the below for the sensors?

Yes each one is coming from a sensor and both connected to the endstops connector. These are the original ones. So the red in 3 wire configuration above would be the x min and the black would be Y max in the endstops header row, I should then take matching blue wires (disconnecting from yellow) and connect them next to the xmin and ymax grounds as well correct?

Correct on all counts. :slight_smile:

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.